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Abstract

Radical cyclization of 2-(!-haloalkylthio)enones gives predominantlyfused-thiapolycycloalkanones. © 2000
Elsevier Science Ltd. All rights reserved.
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We have previously prepared oxapolycycloalkanones via cyclization of radicals (e.g.,1, Z=O) generat-
ed from diosphenol!-haloalkyl ethers.1 We decided to examine radical cyclization of analogous sulfur-
tethered systems for several reasons. First, due to the high nucleophilicity of thiols and thiolates, the cycli-
zation substrates can be prepared efficiently from a variety of precursors.2 Second, thiacycloalkanones,3

the expected products, are of interest in mechanistic and conformational analysis studies,4 and should
be useful in the preparation of heterocyclic analogues of physiologically-active substances.5–7 Third,
mechanistic considerations suggested that, since sulfur stabilizes adjacent radical centers more than
oxygen,8 replacement of oxygen by sulfur would result in a greater preference for fused products.
Polarized9 transition state2 is strongly influenced by Z; polarized9 transition state4 is less strongly
influenced by Z, since Z is one atom further removed from the developing radical center (Scheme 1).

Scheme 1.
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The experiments described below suggest that this hypothesis is correct. For example, when6s2,10 was
subjected to the same cyclization conditions as6o, the exclusive product was thetrans-fused7s(Scheme
2).11

Scheme 2.

Results with three other systems are presented in Scheme 3 (yields by isolation or gas
chromatography).12

Scheme 3.

It is notable that for each thia-substrate there is more fused product than in the oxa-series and, with
the exception of14, less uncyclized (reduced) product.13 The increased amount of 5-endocyclization in
14 (compared to its oxa analogue) can also be attributed to the longer C–S bond length.14 As previously
noted,1 aryl radicals (cf.6s) cyclize well, whereas benzyl radicals (cf.18) cyclize poorly.

Application of transformations typical of�-sulfenylketones15 leads to further possibilities. For
example, Raney nickel desulfurization of11 and 12 gives 3-propylcyclohexanone22 and 2-
propylcyclohexanone23, respectively, thereby providing a method to distinguishfused- from
spiro-cyclization (Scheme 4).
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Scheme 4.

Reductive alkylation or sulfur-directed regioselective enolate formation followed by alkylation are
other attractive sequences.16 We are continuing to explore the synthetic possibilities of these cyclizations.
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